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a b s t r a c t

Combined forced and free flow in a vertical channel with an adiabatic wall and an isothermal wall is
investigated. The laminar, parallel and fully developed regime is considered. A uniform horizontal mag-
netic field is assumed to be applied to the fluid. The local balance equations are written in a dimension-
less form and solved by taking into account the effects of Joule heating and viscous dissipation. The
solutions are obtained both analytically by a power series method and numerically. The dimensionless
governing parameters affecting the velocity and temperature profiles are the Hartmann number and
the ratio between the Grashof number and the Reynolds number. Dual solutions are shown to exist for
every value of the Hartmann number within a bounded range of the ratio between the Grashof number
and the Reynolds number. Outside this range, no parallel flow solutions of the problem exist.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Some authors [1–5] have pointed out that the laminar solution
of steady natural or mixed convection problems may be not
unique. In particular, the existence of dual solutions of boundary
value problems describing external flows has been shown in Refs.
[1–4]. Recently [5], the following result has been obtained: for fully
developed laminar flow in a plane vertical channel with isothermal
walls at the same temperature, the local balance equations admit
two different solutions for any given value of the volume flow rate.
Moreover, in the case of upward mean flow, there exist a maxi-
mum value of the volume flow rate above which no laminar paral-
lel flow solution is admitted [5]. The presence of dual solutions is
due to the nonlinearity of the balance equations produced by vis-
cous dissipation. Situations in which the fully developed laminar
flow in a vertical channel is described by nonlinear balance equa-
tions occur, for instance, when a magnetohydrodynamic force is
present and the thermal generation due to Joule effect is non neg-
ligible. In recent years, much attention has been devoted to the
study of magnetohydrodynamic effects on natural and mixed con-
vection flows [6–11]. Indeed, convective flows in the presence of
magnetic fields occur in many technical applications, such as, for
instance, the optimization of industrial casting of metals [12]. In
particular, in [6] an analytical solution for the natural convection
in a two-dimensional rectangular cavity has been determined, in
the presence of a vertical magnetic field. Pan and Li [7] have stud-
ll rights reserved.

(A. Barletta).
ied the mixed convection in a vertical plane channel with a hori-
zontal magnetic field, in conditions of microgravity with a
gravitational acceleration that oscillates in time with a sinusoidal
law (g-jitter effect). The mixed convection flow in a horizontal cir-
cular duct in the presence of a uniform vertical magnetic field has
been studied numerically in Ref. [8]. An experimental study on the
natural convection of a Na22K78 alloy in a cavity with a rectangular
section, in the presence of a vertical magnetic field, has been pre-
sented by Burr and Müller [9]. These authors have shown that
the magnetic field produces a systematic decrease of heat fluxes
in the fluid. In Ref. [10], the authors study the mixed convection
in a vertical channel by considering the effects of viscous dissipa-
tion and of Joule heating. They determine the velocity and the tem-
perature distribution both analytically, by means of a perturbation
expansion, and numerically, by a finite difference method. Sposito
and Ciofalo [11] have obtained analytical solutions of the local bal-
ance equations for fully developed mixed convection in a vertical
plane channel, by considering isothermal walls and several electric
boundary conditions.

In this paper, the steady laminar flow of an electrically conduct-
ing fluid in a plane vertical channel is considered. The velocity field
is parallel to the gravitational acceleration and is orthogonal to the
external magnetic field; the latter is uniform and is not influenced
by the fluid flow. One of the channel walls is adiabatic, while the
other is isothermal. The local balance equations are nonlinear
and the boundary value problem, solved analytically, presents
two different solutions for each value of the prescribed pressure
gradient, provided that the latter lies within a bounded range out-
side which no laminar and parallel solution exists.
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Nomenclature

An series coefficients
~B magnetic induction field
B modulus of ~B
~E induced electric field
~f magnetic body force
~g acceleration due to the gravity
g modulus of ~g
Gr Grashof number, Eq. (12)
~J current density
k thermal conductivity of the fluid
L channel width
M Hartmann number, Eq. (12)
P hydrodynamic pressure, pþ qg X
qg power generated per unit volume
Re Reynolds number, Eq. (12)
T temperature
Tw wall temperature
Tref reference temperature
u dimensionless velocity
~U velocity
U vertical velocity component
Ur reference velocity, Eq. (13)
X vertical Cartesian coordinate
Y horizontal Cartesian coordinate
y dimensionless coordinate, Eq. (12)

Greek symbols
a slope of uðyÞ at y ¼ 0, Eq. (16)
b volumetric coefficient of thermal expansion
DT temperature scale, Eq. (13)
/ dimensionless flux, Eq. (25)
K dimensionless parameter, Eq. (12)
l dynamic viscosity
m kinematic viscosity
# dimensionless temperature, Eq. (12)
q mass density
r electric conductivity
sXY shear stress applied at the wall

Superscripts, subscripts
0 derivative with respect to y
ð�Þ positive/negative threshold value
cr threshold value
f first branch of solutions
JH Joule heating
l left branch of solutions
r right branch of solutions
s second branch of solutions
VD viscous dissipation

Fig. 1. Drawing of the vertical channel.
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2. Governing equations

We consider the steady laminar flow of an electrically conduct-
ing fluid of electric conductivity r in a vertical parallel plane chan-
nel of width L. The X-axis of the coordinate system is opposite to
the gravitational acceleration ~g and the Y-axis is perpendicular to
the channel walls which are assumed to be impermeable (see
Fig. 1). Flow is parallel so that the velocity is directed along the
X-axis. The left wall (at Y ¼ 0) is insulated (adiabatic) and the right
one (at Y ¼ L) is kept at the constant temperature Tw. The fluid mo-
tion is driven simultaneously by an applied pressure gradient, the
buoyancy force and the MHD force due to a uniform external mag-
netic induction field ~B perpendicular to the channel walls. No
external electric field is applied. Moreover, the magnetic Reynolds
number is so small that the magnetic field induced by the moving
fluid is negligible with respect to the external magnetic field.

The induced electric field is ~E ¼ ~U �~B, so that the current den-
sity is given by

~J ¼ r~E ¼ r ~U �~B; ð1Þ

where r is the electric conductivity of the fluid, which will be con-
sidered as constant. Since ~B is orthogonal to ~U the magnetic body
force per unit volume can be expressed as

~f ¼ �rB2~U: ð2Þ

The power per unit volume generated by Joule effect is

qg ¼~J �~E ¼ rð~U �~BÞ � ð~U �~BÞ ¼ rB2U2: ð3Þ

Let us denote by q the density at the reference temperature Tref . The
fully developed parallel flow condition and the uniform wall tem-
perature imply that the fluid velocity U along X and the fluid tem-
perature T depend only on Y, the hydrodynamic pressure
P ¼ pþ qgX depends only on X and dP=dX is constant. We also as-
sume that the Boussinesq approximation holds and that both the
Joule heating and the heat generation by viscous dissipation must
be taken into account. The momentum and energy equations can
be expressed as

l
d2U

dY2 � rB2U þ qgbðT � Tref Þ �
dP
dX
¼ 0; ð4Þ

k
d2T

dY2 þ rB2U2 þ l
dU
dY

� �2

¼ 0: ð5Þ

The reference temperature Tref is chosen equal to the temperature
Tð0Þ of the adiabatic wall. According to the Boussinesq approxima-
tion, the values of q, l, b, k and r are taken at the reference temper-
ature Tref . The no slip conditions and the prescribed thermal
boundary conditions are given by

Uð0Þ ¼ UðLÞ ¼ 0; ð6Þ
dT
dY

����
Y¼0
¼ 0; TðLÞ ¼ Tw: ð7Þ
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From Eq. (4), the temperature TðYÞ can be expressed as

TðYÞ ¼ Tð0Þ þ 1
qgb

rB2U � l
d2U

dY2 þ
dP
dX

 !
: ð8Þ

Differentiating two times Eq. (8) with respect to Y and substituting
in Eq. (5), one obtains for the velocity U the non linear ordinary dif-
ferential equation of the fourth order,

d4U

dY4 �
rB2

l
d2U

dY2 þ
qgb

k
U2

 !
� qgb

k
dU
dY

� �2

¼ 0: ð9Þ

Further boundary conditions on UðYÞ can be obtained from Eqs. (6)–
(8)

d2U

dY2

�����
Y¼0

¼ 1
l

dP
dX

; ð10Þ

d3U

dY3

�����
Y¼0

¼ rB2

l
dU
dY

����
Y¼0

: ð11Þ
3. Dimensionless quantities

Let us define the dimensionless quantities

y ¼ Y
L
; uðyÞ ¼ UðYÞ

Ur
; #ðyÞ ¼ TðYÞ � Tð0Þ

DT
;

Re ¼ LUr

m
; Gr ¼ gbL3DT

m2 ; M ¼
ffiffiffi
r
l

r
BL; K ¼ Gr

Re
¼ � gbL4

mk
dP
dX

;

ð12Þ

where the velocity and temperature scales are defined as

Ur ¼ �
L2

l
dP
dX

; DT ¼ lU2
r

k
: ð13Þ

On account of Eq. (12), Eqs. (9)–(11) and the no-slip condition at
Y ¼ 0 can be rewritten in the dimensionless form

u0000 �M2ðu00 þ Ku2Þ � Ku02 ¼ 0; ð14Þ
uð0Þ ¼ 0;u00ð0Þ ¼ �1;u000ð0Þ ¼ M2u0ð0Þ; ð15Þ

where prime denotes differentiation with respect to y. Eqs. (14), and
(15) represent an incompletely defined initial value problem, since
no initial condition at y ¼ 0 for u0ðyÞ is assigned. This problem can
be completed by defining a parameter a such that

u0ð0Þ ¼ a: ð16Þ

The guessed value of a can be obtained once the completed initial
value problem has been solved, by prescribing the no-slip boundary
condition at Y ¼ L, namely

uð1Þ ¼ 0: ð17Þ

On account of the Eqs. (12) and (13), the shear stresses applied to
the channel walls can be evaluated as

sXYð0Þ ¼ l
dU
dY

����
Y¼0
¼ �L

dP
dX

u0ð0Þ ¼ �L
dP
dX

a; ð18Þ

sXYðLÞ ¼ �l
dU
dY

����
Y¼L

¼ L
dP
dX

u0ð1Þ: ð19Þ

Eq. (18) clearly shows the physical meaning of parameter a defined in
Eq. (16). From Eqs. (8), (12) and (13), the dimensionless temperature
#ðyÞ can be evaluated from the solution of Eqs. (14)–(17), namely

# ¼ 1
K

M2u� u00 � 1
� �

: ð20Þ

To study the thermal behaviour of the left wall, one can obtain from
Eq. (12) the temperature at y ¼ 0

Tð0Þ ¼ TðLÞ � #ð1ÞDT ¼ Tw � #ð1ÞDT: ð21Þ
Eq. (5) can be written in a dimensionless form as

#00 þM2u2 þ u02 ¼ 0: ð22Þ

Therefore, by integrating Eq. (22) with respect to y in the interval
½0;1� and by employing Eq. (7), one obtains

�#0ð1Þ ¼ M2
Z 1

0
u2dyþ

Z 1

0
u02dy: ð23Þ

The left hand side of Eq. (23) represents the dimensionless heat flux
exchanged through the boundary y ¼ 1 while the two integral con-
tributions on the right hand side represent the Joule heating power
and the viscous dissipation power generated in the channel, respec-
tively. To explicit the physical significance of the different terms of
the Eq. (23), this equation can be rewritten as

/ ¼ /JH þ /VD; ð24Þ

where

/ ¼ �#0ð1Þ;/JH ¼ M2
Z 1

0
u2 dy;/VD ¼

Z 1

0
u02 dy: ð25Þ
4. Analytical solution

4.1. Special case K! 0

When K becomes negligibly small in correspondence to a non-
vanishing value of dP=dX, the effect of buoyancy in the local bal-
ance equations disappears. In this case, forced convection regime
occurs. The dimensionless velocity profile is obtained analytically
by solving Eqs. (4) and (6) and by employing the dimensionless
quantities defined in Eq. (12), namely

uðyÞ ¼ 1
M2 �

1
M2 coshðMyÞ þ tanhðM=2Þ

M2 sinhðMyÞ: ð26Þ

The right hand side of Eq. (26) represents the well known Hart-
mann–Poiseuille velocity profile. By substituting the Hartmann–
Poiseuille profile in Eq. (22), according to the thermal boundary
conditions Eq. (7), one obtains the dimensionless temperature
profile

#ðyÞ ¼ �
M2y2 þ M2y2 þ 3

� �
coshðMÞ � 4 coshðMyÞ þ 4

2M4½coshðMÞ þ 1�

þ 4 coshðM �MyÞ þ 2My sinhðMÞ � coshðM � 2MyÞ
2M4½coshðMÞ þ 1�

:

ð27Þ

On the other hand, if one solves the initial value problem Eqs. (14)–
(16), one obtains, in the limit K! 0, the dimensionless velocity
profile

uðyÞ ¼ 1
M2 �

1
M2 coshðMyÞ þ a

M
sinhðMyÞ: ð28Þ

Eq. (28) implies a linear relation between the velocity in y ¼ 1 and a,
namely

uð1Þ ¼ 1
M2 �

1
M2 cosh M þ a

M
sinh M: ð29Þ

The no-slip condition at y ¼ 1 expressed in Eq. (17) allows one to
determine the value of a,

a ¼ tanhðM=2Þ
M

; ð30Þ

that makes Eq. (28) congruent with the Hartmann–Poiseuille veloc-
ity profile given by Eq. (26).
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4.2. Power series solution

In the general case, when buoyancy effects are included, the
solution of Eqs. (14)–(16) can be sought in the form of a power ser-
ies with respect to y,

uðyÞ ¼
X1
n¼0

Anyn: ð31Þ

The coefficients A0, A1, A2 and A3 are easily determined from the ini-
tial conditions Eqs. (15) and (16),

A0 ¼ 0; A1 ¼ a; A2 ¼ �
1
2
; A3 ¼

M2a
6

: ð32Þ

The coefficients An with n P 4 can be obtained recursively by
substituting Eq. (31) in Eq. (14). One obtains

Anþ4 ¼ M2 ðnþ 2Þ!
ðnþ 4Þ! Anþ2 þ

n!K
ðnþ 4Þ!

Xn

j¼0

½M2AjAn�j

þ ðjþ 1Þðn� jþ 1ÞAjþ1An�jþ1�: ð33Þ

The coefficients A4, A5 and A6 evaluated through Eq. (33) are given by

A4 ¼
Ka2 �M2

24
; A5 ¼

ðM4 � 2KÞa
120

; A6 ¼
ð2þ 5M2a2ÞK�M4

720
:

ð34Þ

The no-slip condition at the right wall y ¼ 1 becomes

uð1Þ ¼
X1
n¼0

An ¼ 0: ð35Þ

While K and M can be considered as governing parameters whose
value is known a priori, the parameter a is not prescribed. As it
can be inferred from Eqs. (32) and (33), for any given pair ðK;MÞ,
Eq. (35) can be considered as an equation in the unknown a. In other
words, for any prescribed pair ðK;MÞ, the values of a compatible
with the no-slip condition at y ¼ 1 are obtained as solution of Eq.
(35).
Table 1
Comparison between analytical series solution (truncated to the first 170 terms) and numer
/ versus M, for K ¼ 10.

M al /l ar

1 �3.09411 16.3131 0.4307
�3.09411 16.3131 0.4307
�3.09411 16.3131 0.4307

2 �3.14317 31.4515 0.3635
�3.14317 31.4515 0.3635
�3.14317 31.4515 0.3635

3 �3.00281 77.3591 0.2938
�3.00281 77.3591 0.2938
�3.00281 77.3591 0.2938

4 �2.53954 207.874 0.2375
�2.53954 207.874 0.2375
�2.53954 207.874 0.2375

5 �1.84207 541.041 0.1957
�1.84207 541.041 0.1957
�1.84207 541.041 0.1957

6 �1.15349 1275.06 0.1651
�1.15349 1275.96 0.1651
�1.15349 1275.96 0.1651

7 �0.63464 2732.17 0.1422
�0.63465 2700.61 0.1422
�0.63465 2700.61 0.1422

8 �0.30356 4751.35 0.1247
�0.30349 5212.25 0.1247
�0.30349 5212.25 0.1247
The quantity u0ð1Þ used in Eq. (19) to evaluate the shear stress
sXYðLÞ can be written as

u0ð1Þ ¼
X1
n¼0

ðnþ 1ÞAnþ1: ð36Þ

Substituting Eq. (31) in Eq. (20), the dimensionless temperature dis-
tribution is

# ¼ 1
K

X1
n¼0

M2An � ðnþ 1Þðnþ 2ÞAnþ2

h i
yn � 1

( )
: ð37Þ

Moreover, substituting Eqs. (31) and (37) in Eq. (25)

/ ¼ 1
K

X1
n¼0

ðnþ 1Þ½ðnþ 2Þðnþ 3ÞAnþ3 �M2Anþ1�; ð38Þ

/JH ¼ M2
X1
n¼0

1
nþ 1

Xn

j¼0

AjAn�j

 !
; ð39Þ

/VD ¼
X1
n¼0

1
nþ 1

Xn

j¼0

ðjþ 1Þ ðn� jþ 1ÞAjþ1An�jþ1

 !
: ð40Þ
5. Discussion of the results

By employing the Euler–Knopp acceleration method [13] (see
Appendix), the convergence of the series solution can be enhanced.
In Table 1, one can compare the analytical method (truncating the
sums to the first 170 terms) with two different numerical methods
(explicit Runge–Kutta and Adams predictor–corrector), with refer-
ence to quantities a and /. These quantities present dual values for
every fixed pair of K and M. This table is obtained for K ¼ 10 and
different values M. In the following discussion, one will use the
terms ‘‘right branch” and ‘‘left branch” referring to the solutions
obtained for the values of a on the right and left intersections with
the abscissa axis uð1Þ ¼ 0 of the diagrams in Fig. 2. The right branch
of values of both a and / has at least 5 digits accuracy in each case.
For a, the left branch has a high accuracy up to M ¼ 7 and then the
ical solutions (Adams method and explicit Runge–Kutta method): dual values of a and

/r Solution method

9 0.05914 Analytical
9 0.05914 Numerical (Adams)
9 0.05914 Numerical (Explicit Runge–Kutta)

3 0.04932 Analytical
3 0.04932 Numerical (Adams)
3 0.04932 Numerical (Explicit Runge–Kutta)

0 0.03848 Analytical
0 0.03848 Numerical (Adams)
0 0.03848 Numerical (Explicit Runge–Kutta)

5 0.02938 Analytical
5 0.02938 Numerical (Adams)
5 0.02938 Numerical (Explicit Runge–Kutta)

8 0.02255 Analytical
8 0.02255 Numerical (Adams)
8 0.02255 Numerical (Explicit Runge–Kutta)

1 0.01758 Analytical
1 0.01758 Numerical (Adams)
1 0.01758 Numerical (Explicit Runge–Kutta)

3 0.01398 Analytical
3 0.01398 Numerical (Adams)
3 0.01398 Numerical (Explicit Runge–Kutta)

2 0.01133 Analytical
2 0.01133 Numerical (Adams)
2 0.01133 Numerical (Explicit Runge–Kutta)



Fig. 2. Plots of uð1Þ versus a for different values of K in the cases M ¼ 0 and M ¼ 5.

Fig. 3. Threshold values Kð�Þcr versus M.

Fig. 4. Plots of Hartmann–Poiseuille flow (K! 0) profiles uðyÞ for different values
of M.
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accuracy starts to decrease. For /, the accuracy decreases starting
from M ¼ 6. The numerical solutions are obtained by solving
the initial value problem (14)–(16) with software Mathematica
(� Wolfram Research, Inc.) through the use of function NDSolve.
This function allows the user to solve numerically an initial value
problem by means of a specified method [14]. The results
discussed in the following are based on the power series solution
in the case it provides a satisfactory accuracy, otherwise the
numerical method is used.

Fig. 2 shows the features of the solution space for different
positive and negative values of K, with M ¼ 0 (absence of MHD ef-
fects) and M ¼ 5. Both the frames of Fig. 2 are divided in two re-
gions by the K ¼ 0 straight line given by Eq. (29). Note that Eq.
(29) in the limiting case M ¼ 0 reduces to uð1Þ ¼ �1=2þ a. Fig. 2
reveals that the no-slip condition given by Eq. (17) can be fulfilled
only when K belongs to the interval Kð�Þcr � K � KðþÞcr . Outside this
range of K the flow problem does not admit solutions. The depen-
dence of the threshold values Kð�Þcr and KðþÞcr on M is represented in
Fig. 3. This figure shows that the range of allowed values of K
expands as M increases. It must be pointed out that, for K > 0,
the right branch of solutions corresponds to values of a nearer to
that given by Eq. (30). The latter a is the one characteristic of
Hartmann–Poiseuille flow. On the other hand, the left branch of
solutions represents a marked departure from the Hartmann–
Poiseuille flow regime. In the case K < 0, the reverse occurs: the
left branch of solutions corresponds to values of a nearer to that
given by Eq. (30), while the right branch of solutions markedly
departs from the Hartmann–Poiseuille regime. In the following,
for K > 0, the right branch of solutions will be denoted as ‘‘first
branch” while the left branch will be denoted as ‘‘second branch”.
For K < 0, the left branch of solutions will be denoted as ‘‘first
branch” while the right branch will be denoted as ‘‘second branch”.

For a given Hartmann number M, there exists an interval
Kð�Þcr 6 K 6 KðþÞcr outside which the boundary value problem (4)–
(7) does not admit solutions. When Eqs. (4)–(7) have no solutions,
one cannot have parallel flows within the channel. The case
K < Kð�Þcr implies a negative K with a sufficiently high absolute va-
lue, i.e., from Eq. (12), a downward directed pressure force with a
sufficiently high value of jdP=dXj. The case K > KðþÞcr implies a suf-
ficiently high positive K, i.e., from Eq. (12), an upward directed
pressure force with a sufficiently high value of jdP=dXj. In other
words, whatever is the sign of dP=dX, parallel flow is impossible
when jdP=dXj exceeds some threshold value. The impossibility of
parallel flow under some parametric conditions implies that other
flow regimes will take place instead. It is reasonable to expect that
more complicated eddy flow patterns replace the parallel flow
when too high pressure gradients are applied to the fluid.

Fig. 4 refers to the Hartmann–Poiseuille flow regime (K! 0), i.e.
the regime of negligible buoyancy. This figure shows the dimen-
sionless velocity profiles uðyÞ for different values of M. As is well
known, the effect of an increasing Hartmann number is an overall
reduction of the fluid velocity.

When the buoyancy effect takes place, the parallel flow solution
of the governing equations is in general not unique, as it is revealed
by Fig. 2. In the limit K! 0, uðyÞ is always positive, thus implying,
on account of Eq. (12), that the fluid flow always follows the direc-
tion of decreasing pressure. On the other hand, due to the effect of
buoyancy, flows in the direction of increasing pressure may take
place when K–0; for these flows, uðyÞ is negative. Obviously, the
direction of increasing pressure depends on the sign of K, as im-
plied by Eq. (12): a positive value of K means that the pressure in-
creases in the downward direction; a negative value of K means
that the pressure increases in the upward direction. In Fig. 5, dual



Fig. 5. Dual solutions velocity profiles u versus y for M ¼ 5 and K ¼ �10 (upper
frame), M ¼ 5 and K ¼ 10 (lower frame).

Fig. 6. Plots of the dual velocity gradients at left wall a versus M. K ¼ �10 for the
upper frame and K ¼ 10 for the lower frame.

Fig. 7. Plots of the dual velocity gradients at right wall�u0ð1Þ versus M. K ¼ �10 for
the upper frame and K ¼ 10 for the lower frame.
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velocity profiles are reported with reference to M ¼ 5. These plots
of u can be easily interpreted according to the following rule: posi-
tive values of u imply that the fluid flows in the direction of
decreasing pressure (normal flow), negative values of u imply that
the fluid flows in the direction of increasing pressure (reversed
flow). Therefore, the lower frame of Fig. 5 shows that for K ¼ 10
the second branch solution corresponds to a condition of reversed
flow, while the first branch solution yields a condition of normal
flow. The upper frame refers to K ¼ �10 and displays normal flow
conditions both for the first branch and the second branch solu-
tions. However, it must be pointed out that the normal flows for
K ¼ �10 are directed downward. As expected, both frames of
Fig. 5 show that the second branch profile is markedly asymmetric
and displays a high velocity gradient at the isothermal wall y ¼ 1.
The first branch solutions correspond to much lower velocity val-
ues and, for this reason, these profiles are magnified by a factor
of 102 for a better comparison with the others. Figs. 6 and 7 repre-
sent the change of the wall strain at y ¼ 0 and y ¼ 1 as a function of
M. Fig. 6 shows that the strain at the left wall may have a non–
monotonic behaviour and, in every case, assumes very small values
when M is very high. As it is shown in Fig. 7, the strain correspond-
ing to the first branch decreases with M and tends to become very
small for M !1. The second branch solutions display a strain
whose absolute value increases with M. The latter feature is related
to the increasing asymmetry of the second branch velocity profiles
when M increases. As it is suggested in Fig. 5, this increasing asym-
metry implies an increasing absolute value of the velocity gradient
at y ¼ 1.

The thermal features of the solutions are described by Figs. 8–
12. Fig. 8 shows the dual temperature profiles for M ¼ 5 in two
cases: K ¼ �10 and K ¼ 10. Each profile shows that, as expected,
the maximum temperature occurs at the adiabatic wall y ¼ 0.
The first branch temperature profiles, #f , display low temperature



Fig. 8. Dual solutions temperature profiles # versus y for M ¼ 5 and K ¼ �10 (upper
frame), M ¼ 5 and K ¼ 10 (lower frame).

Fig. 9. Plots of dual /JH versus M. K ¼ �10 for the upper frame and K ¼ 10 for the
lower frame.

Fig. 10. Plots of dual /VD versus M. K ¼ �10 for the upper frame and K ¼ 10 for the
lower frame.

Fig. 11. Plots of dual / versus M at the right wall. K ¼ �10 for the upper frame and
K ¼ 10 for the lower frame.
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Fig. 12. Plots of dual �#ð1Þ versus M. K ¼ �10 for the upper frame and K ¼ 10 for
the lower frame.

A. Barletta, M. Celli / International Journal of Heat and Mass Transfer 51 (2008) 6110–6117 6117
gradients if compared with their dual companions and are thus re-
scaled by a factor of 104. The thermal differences between the dual
solutions are compatible with the mechanical differences dis-
cussed above, since the second branch solutions always display
higher heat generation terms u2 and u02.

Figs. 9–11 describe, respectively, the Joule heat flux contribu-
tion, the viscous dissipation heat flux contribution and their sum,
/, as a function of M. The latter sum, as it is shown in Eq. (24), rep-
resents the wall heat flux at the isothermal boundary y ¼ 1. For
each figure and frame, the second branch values are rescaled by
a factor of 10�6 and they are always increasing functions of M.
Fig. 9 shows the obvious feature that Joule heating vanishes if
M ! 0 for each profile. For the first branch of solutions, UJH

displays a maximum and then it decreases for higher values of
M. This feature suggests a stabilizing effect of the magnetic field.
Fig. 10 shows that the viscous dissipation flux for the first branch
solutions is a monotonic decreasing function of M, thus confirming
the stabilizing role of the magnetic field. Figs. 11 and 12 show the
behaviour of the wall heat flux at the isothermal wall and of the
temperature difference between the boundary walls, respectively.
The dependence on M of these quantities is, in fact, qualitatively
similar: a monotonic increasing behaviour for the second branch
solutions and a monotonic decreasing behaviour for the first
branch solutions.

6. Conclusions

Laminar mixed convection in a vertical plane channel has been
investigated by taking into account the effect of an external uni-
form magnetic field orthogonal to the flow direction. Viscous heat-
ing and Joule heating in the fluid are considered. The local balance
equations have been written in a dimensionless form and solved
both analytically by a power series method and numerically. The
governing dimensionless parameters are: the Hartmann number
M, the ratio K between Grashof number Gr and the Reynolds num-
ber Re. The main results obtained are the following.

� For every choice of M, the governing equations admit solutions
only within a range Kð�Þcr 6 K 6 KðþÞcr . The values Kð�Þcr depend on
M, Kð�Þcr is negative and KðþÞcr is positive. The range of existence
of the solutions expands with M.

� For fixed values of M and K, within the range of existence, two
distinct solutions of the governing equations are allowed (dual
solutions). The dual solutions become coincident when K ¼ Kð�Þcr .

� Within each dual solutions pair, one solution is more similar
than the other to the Hartmann–Poiseuille flow solution. This
feature has been used to distinguish between a first branch solu-
tion, more similar to the Hartmann–Poiseuille solution, and a
second branch solution, markedly dissimilar from the Hart-
mann–Poiseuille solution.

� For the second branch of solutions, the absolute value of the
strain at the isothermal wall, the heat flux due to viscous dissi-
pation, the heat flux due to Joule heating and the heat flux at the
isothermal wall are monotonic increasing functions of M.
Appendix. Euler–Knopp method

Let us consider a converging series,

S ¼
X1
n¼0

wn: ðA:1Þ

Let us define the modified coefficients

~wn ¼
n!

2nþ1

Xn

j¼0

wj

j! ðn� jÞ! : ðA:2Þ

Then, the series

X1
n¼0

~wn ðA:3Þ

sums up to S. The modified series (A.3) is thus equivalent to that
appearing in Eq. (A.1) although, in several cases, its convergence
is much faster.
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